218 research outputs found

    Consensus-based technical recommendations for clinical translation of renal ASL MRI

    Get PDF
    OBJECTIVES: This study aimed at developing technical recommendations for the acquisition, processing and analysis of renal ASL data in the human kidney at 1.5 T and 3 T field strengths that can promote standardization of renal perfusion measurements and facilitate the comparability of results across scanners and in multi-centre clinical studies. METHODS: An international panel of 23 renal ASL experts followed a modified Delphi process, including on-line surveys and two in-person meetings, to formulate a series of consensus statements regarding patient preparation, hardware, acquisition protocol, analysis steps and data reporting. RESULTS: Fifty-nine statements achieved consensus, while agreement could not be reached on two statements related to patient preparation. As a default protocol, the panel recommends pseudo-continuous (PCASL) or flow-sensitive alternating inversion recovery (FAIR) labelling with a single-slice spin-echo EPI readout with background suppression and a simple but robust quantification model. DISCUSSION: This approach is considered robust and reproducible and can provide renal perfusion images of adequate quality and SNR for most applications. If extended kidney coverage is desirable, a 2D multislice readout is recommended. These recommendations are based on current available evidence and expert opinion. Nonetheless they are expected to be updated as more data become available, since the renal ASL literature is rapidly expanding

    Resistance of Renal Cell Carcinoma to Sorafenib Is Mediated by Potentially Reversible Gene Expression

    Get PDF
    Purpose: Resistance to antiangiogenic therapy is an important clinical problem. We examined whether resistance occurs at least in part via reversible, physiologic changes in the tumor, or results solely from stable genetic changes in resistant tumor cells. Experimental Design: Mice bearing two human RCC xenografts were treated with sorafenib until they acquired resistance. Resistant 786-O cells were harvested and reimplanted into naïve mice. Mice bearing resistant A498 cells were subjected to a 1 week treatment break. Sorafenib was then again administered to both sets of mice. Tumor growth patterns, gene expression, viability, blood vessel density, and perfusion were serially assessed in treated vs control mice. Results: Despite prior resistance, reimplanted 786-O tumors maintained their ability to stabilize on sorafenib in sequential reimplantation steps. A transcriptome profile of the tumors revealed that the gene expression profile of tumors upon reimplantation reapproximated that of the untreated tumors and was distinct from tumors exhibiting resistance to sorafenib. In A498 tumors, revascularization was noted with resistance and cessation of sorafenib therapy and tumor perfusion was reduced and tumor cell necrosis enhanced with re-exposure to sorafenib. Conclusions: In two RCC cell lines, resistance to sorafenib appears to be reversible. These results support the hypothesis that resistance to VEGF pathway therapy is not solely the result of a permanent genetic change in the tumor or selection of resistant clones, but rather is due to a great extent to reversible changes that likely occur in the tumor and/or its microenvironment

    CMB Telescopes and Optical Systems

    Full text link
    The cosmic microwave background radiation (CMB) is now firmly established as a fundamental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB observations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1: Telescopes and Instrumentatio

    Resting State Functional Connectivity in Perfusion Imaging: Correlation Maps with BOLD Connectivity and Resting State Perfusion

    Get PDF
    Functional connectivity is a property of the resting state that may provide biomarkers of brain function and individual differences. Classically, connectivity is estimated as the temporal correlation of spontaneous fluctuations of BOLD signal. We investigated differences in connectivity estimated from the BOLD and CBF signal present in volumes acquired with arterial spin labeling technique in a large sample (N = 265) of healthy individuals. Positive connectivity was observable in both BOLD and CBF signal, and was present in the CBF signal also at frequencies lower than 0.009 Hz, here investigated for the first time. Negative connectivity was more variable. The validity of positive connectivity was confirmed by the existence of correlation across individuals in its intensity estimated from the BOLD and CBF signal. In contrast, there was little or no correlation across individuals between intensity of connectivity and mean perfusion levels, suggesting that these two biomarkers correspond to distinct sources of individual differences

    Perfusion by Arterial Spin Labelling following Single Dose Tadalafil in Small Vessel Disease (PASTIS): study protocol for a randomized controlled trial

    Get PDF
    Background Cerebral small vessel disease is a common cause of vascular cognitive impairment in older people, with no licensed treatment. Cerebral blood flow is reduced in small vessel disease. Tadalafil is a widely prescribed phosphodiesterase-5 inhibitor that increases blood flow in other vascular territories. The aim of this trial is to test the hypothesis that tadalafil increases cerebral blood flow in older people with small vessel disease. Methods/design Perfusion by Arterial Spin labelling following Single dose Tadalafil In Small vessel disease (PASTIS) is a phase II randomised double-blind crossover trial. In two visits, 7-30 days apart, participants undergo arterial spin labelling to measure cerebral blood flow and a battery of cognitive tests, pre- and post-dosing with oral tadalafil (20 mg) or placebo. Sample size: 54 participants are required to detect a 15% increase in cerebral blood flow in subcortical white matter (p < 0.05, 90% power). Primary outcomes are cerebral blood flow in subcortical white matter and deep grey nuclei. Secondary outcomes are cortical grey matter cerebral blood flow and performance on cognitive tests (reaction time, information processing speed, digit span forwards and backwards, semantic fluency). Discussion Recruitment started on 4th September 2015 and 36 participants have completed to date (19th April 2017). No serious adverse events have occurred. All participants have been recruited from one centre, St George’s University Hospitals NHS Foundation Trust. Trial registration European Union Clinical Trials Register: EudraCT number 2015-001235-20. Registered on 13 May 2015

    Morphological and Pathological Evolution of the Brain Microcirculation in Aging and Alzheimer’s Disease

    Get PDF
    Key pathological hallmarks of Alzheimer’s disease (AD), including amyloid plaques, cerebral amyloid angiopathy (CAA) and neurofibrillary tangles do not completely account for cognitive impairment, therefore other factors such as cardiovascular and cerebrovascular pathologies, may contribute to AD. In order to elucidate the microvascular changes that contribute to aging and disease, direct neuropathological staining and immunohistochemistry, were used to quantify the structural integrity of the microvasculature and its innervation in three oldest-old cohorts: 1) nonagenarians with AD and a high amyloid plaque load; 2) nonagenarians with no dementia and a high amyloid plaque load; 3) nonagenarians without dementia or amyloid plaques. In addition, a non-demented (ND) group (average age 71 years) with no amyloid plaques was included for comparison. While gray matter thickness and overall brain mass were reduced in AD compared to ND control groups, overall capillary density was not different. However, degenerated string capillaries were elevated in AD, potentially suggesting greater microvascular “dysfunction” compared to ND groups. Intriguingly, apolipoprotein ε4 carriers had significantly higher string vessel counts relative to non-ε4 carriers. Taken together, these data suggest a concomitant loss of functional capillaries and brain volume in AD subjects. We also demonstrated a trend of decreasing vesicular acetylcholine transporter staining, a marker of cortical cholinergic afferents that contribute to arteriolar vasoregulation, in AD compared to ND control groups, suggesting impaired control of vasodilation in AD subjects. In addition, tyrosine hydroxylase, a marker of noradrenergic vascular innervation, was reduced which may also contribute to a loss of control of vasoconstriction. The data highlight the importance of the brain microcirculation in the pathogenesis and evolution of AD

    Integrated Ecosystem Assessment: Lake Ontario Water Management

    Get PDF
    BACKGROUND: Ecosystem management requires organizing, synthesizing, and projecting information at a large scale while simultaneously addressing public interests, dynamic ecological properties, and a continuum of physicochemical conditions. We compared the impacts of seven water level management plans for Lake Ontario on a set of environmental attributes of public relevance. METHODOLOGY AND FINDINGS: Our assessment method was developed with a set of established impact assessment tools (checklists, classifications, matrices, simulations, representative taxa, and performance relations) and the concept of archetypal geomorphic shoreline classes. We considered each environmental attribute and shoreline class in its typical and essential form and predicted how water level change would interact with defining properties. The analysis indicated that about half the shoreline of Lake Ontario is potentially sensitive to water level change with a small portion being highly sensitive. The current water management plan may be best for maintaining the environmental resources. In contrast, a natural water regime plan designed for greatest environmental benefits most often had adverse impacts, impacted most shoreline classes, and the largest portion of the lake coast. Plans that balanced multiple objectives and avoided hydrologic extremes were found to be similar relative to the environment, low on adverse impacts, and had many minor impacts across many shoreline classes. SIGNIFICANCE: The Lake Ontario ecosystem assessment provided information that can inform decisions about water management and the environment. No approach and set of methods will perfectly and unarguably accomplish integrated ecosystem assessment. For managing water levels in Lake Ontario, we found that there are no uniformly good and bad options for environmental conservation. The scientific challenge was selecting a set of tools and practices to present broad, relevant, unbiased, and accessible information to guide decision-making on a set of management options
    corecore